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ABSTRACT In the framework of a curriculum reform in the Netherlands, an interdisciplinary open
inquiry assignment has been introduced as a part of the final secondary school examinations. We devel-
oped and evaluated a preparatory open inquiry assignment to be used in science and mathematics
departments of schools, in collaboration with each other: the falling cones assignment. However, teach-
ers encountered two content problems, that hindered the (guiding of) the open inquiry process. Physics
educators solved the problems and showed how the solution can be used in guiding students for inquiry
learning.
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Introduction

Traditionally, laboratory activities in the classroom are based on a cookbook
approach, hindering students to develop reflective thoughts on what they have
done. When students are doing practical work, teachers rarely ask students if they
understand what they are doing, why they are doing it, or what the results will show
(Gallagher & Tobin 1987). Moreover, the teachers tend to pay much more atten-
tion to laboratory reports than to the process of inquiry and interpretation data. In
a critical review, Hodson (1993) pointed out that practical work is often not taught
very effectively, and, even in laboratory settings, only few students have the oppor-
tunity to develop an insight in doing investigations. In a recent curriculum reform
for upper secondary education in the Netherlands, a shift towards doing investiga-
tions is promoted by introducing a final open inquiry assignment as a part of the
school examination. Preparing for that kind of assignments should cross the
boundaries of the single subjects (Millar, Lubben, Gott, & Duggan, 1994).
Therefore, we developed a preparatory open inquiry assignment for the combina-
tion of physics and mathematics: Falling Cones.

The goal was to have students experience the research process from start to fi-
nish. Teachers were provided with draft teaching materials and adapted them to
their school context. Using the materials in the classrooms, the students experi-
enced two problems that could not be solved by their teachers, because of the com-
plexity of physics. This paper describes the solution of the problems and the ways
in which the solution can be used in guiding the students.

The Falling Cones Assignment

The falling cones open inquiry assignment is about studying the movement of a
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paper cone released at a certain height. The
assignment is introduced by showing the move-
ment of one cone first. Then, the movement of
pairs of cones is demonstrated, and, among oth-
ers, two cones of different sizes, having the same
top angle and made of the same paper, as indi-
cated in Figure 1, are used. These two cones are
released at the same height and at the same time.
To students’ surprise, the cones fall at the same
speed all the way. This brings them into discus-
sions about what characteristics of a cone deter-
mine its movement.

Figure 1. Paper Cones Falling Down

After this plenary introduction, the students in groups are challenged to make
some interesting cones, and study the movements, as a ‘pilot experiment’ for a
more extensive and focused investigation. Moreover, they study theory of gravita-
tion and air resistance. They are asked to formulate a research question about
paper cones, and to elaborate and implement a research plan. After having done
the experiments and processed the data, the students formulate their conclusions.
At the end, the groups present their results on a poster.

In Figure 2, the cone is drawn and relevant variables are shown. Using physics
and mathematics theory, students can understand how the maximum speed (Vpmax)
of the cone is related to variables such as its mass (m), the radius (7) of the ground
circle, the air density (0) and the drag coefficient (C):

Fg’mv:deg (1)

m. g=1CAQOV2yx (2)

ve, -8 2 (3)
ar?2  Co

Using these formulae and the drawing of Figure 2, students can make a design
for an experimental or theoretical research project. The teacher guides the stu-
dent groups when they are trying to for-
mulate a research question, make a
r research design, do experiments or mathe-
matical activities. In order to learn how to
conduct a research project, teachers have
to give students many opportunities to
determine on their own what to investi-
I gate, how, and why to do it in a certain way.

During their investigations, the stu-

dents are guided by their science and

® mathematics teachers cooperating with
each other. They help the students orient

on the experimental as well as on theoreti-

Figure 2. Scheme of a Cone with Variables  cal aspects of the movement under study,
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and stimulate them to focus on aspects of the movement and the cone geometry
during their investigation. No complete answers should be given, as it would make
students’ own contributions unnecessary. Instead, the teacher can ask for reasons
and explanations, can answer questions by asking questions in return, can offer
suggestions, etc., in order to stimulate students to make concrete what they want to
know and investigate. To provide adequate guidance, teachers have to have a tho-
rough understanding of the cone issue and how to investigate (Tamir, 1989).

The Issues of This Study

The falling cones assignment was done in four classes (grade 11 of the pre-uni-
versity stream). The materials for doing the experiments were simple: rulers, stop-
watches, scales, etc. No advanced equipment, such as a position sensor, was avail-
able. Experiences have shown that students were challenged to ask questions about
the motion, about variables being relevant for the maximum speed, to probe rela-
tionships, and to do experiments. We learnt that some students asked questions
that the teachers could not answer, but only by rules of thumb. The students
appeared not to be content with those answers. We identified two content prob-
lems. The solving demands of these problems went beyond teachers’ capabilities.
It was our task as developers to solve them.

First Problem

Experiments about how the maximum speed of the cone depends on the mass,
the shape of the cone, its radius etc., appeared to be most common with students.
However, trying to measure the maximum speed, students encountered a problem:
what distance does the cone have to fall for its speed to become constant?

From equation (3), it can be seen that one needs to have the value of the drag
coefficient Cfor calculating that distance. The drag value depends on the shape of
the cone, but no formula is available. So, teachers suggested to make a reasonable
guess or said: just assume that after falling one meter, the speed is at its maximum.
The students accepted these suggestions, though reluctantly. One group argued
rightly: The start phase of the fall may be dependent on the mass of the cone. In a drawing
(see Figure 3), they showed what they meant by ‘start phase.’

releasing
1 meter

start of
measuring

we assume that from this point
the cone has
a constant speed

end of
measuring

Figure 3. Transcription of the Group’s Drawing Quoted in the Text,
Where One Meter Is Used for “Start Phase.”
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Second Problem

Some students studied how the maximum speed depends on the top angle ()
by releasing cones with equal mass and radius, but different top angles. They found
that the bigger the top angle is, the slower the maximum speed. For getting a for-
mula for this relation, they studied the theory and concluded: If you insert all known
values into formula (3), the drag coefficient and the speed are left as variables. They mea-
sured vy, for three cones with different top angles and wanted to make a graph of
Umax and something with v (e.g., sin Y) to try to make a formula, but did not suc-
ceed. They asked their teacher which formula to try. He suggested V2;,¢ < (sin ¥)-1,
but in fact had no basis for it. So, the problem is: What does the relation between
Umax and sin Y look like?

First, an answer will be given to the question: How does the drag value depend
on the top angle? This is done in two steps: (a) by developing a model, and (b) by
doing experiments and evaluating results using the model. Next, the solution of
the two problems and consequences for guiding the students will be discussed.

Developing a Model for the Cone

The drag coefficient Cis dependent on the top angle of a cone. This can be
illustrated by looking at the drag coefficients of some shapes comparable to cones,
which are found in the literature, as it is shown in Table 1. The flat circle can be
regarded as a cone with a top angle of 1800. Cones with sharper top angles will have
smaller drag coefficients than the flat circle, but no less than the drag coefficient
of the open half sphere. For, it has an open base like the cone and an “ideal” water-
drop-like top. So, the cone drag coefficients are expected to have values between

0,34 and 1,1.

Drag Coefficient of Some Di][jt’lel;ijztl Shapes (Vademecum, 1995)
Flat circle 1.11
Open half sphere 0.34
Drop of water 0.06

Newton already studied the resistance
objects experience when falling through a
homogeneous medium. Edwards (1997)
presented a simplified version of the com-
plicated Principia Mathematica theory. His
version was used to find a relationship
between the cone drag coefficient and the
top angle. Newton assumed that the air
consists of tiny elastic particles with mass m,
uniformly distributed in space, and having
no speed. If the cone is taken as the refer-
ence system, the air particles are moving
vertically upward with speed v, as indica-

ted in Figure 4. As the directions of the Figure 4. A Particle CollidingTElastically
with the Cone
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velocities of the actual air molecules are uniformly distributed in space, this model
can be applied here as a first order approximation. It has to be noted that collisions
between particles are not accounted for. The bouncing against the exterior causes
a drag force. Using the model, the following formula for the drag force can be
derived, as it is explained in Appendix A:

deg = ZAQVZ - sin? (’)/ /2) (4)
Using formulae (4) and (2), one finds for the drag coefficient:
Cly) =4sin2(y/2) (5)

This result predicts that C=4 when the top angle is 1800, and it tends to 0 when
the top angle approaches 0o. Following this first model, 0 < C < 4, this does not
agree with our expectation 0,34 < C < 1,1. So, the Newton model is not adequate.
This is because collisions between particles are not included in the model, result-
ing in airstreams. At the open side of the falling cone, turbulence effects occur, as
is the case with the open half sphere. So, we guess that a turbulence factor a, not
depending on vy, has to be added to the theoretical drag value, its magnitude pro-
bably similar to that of C of the half sphere (~0.34). At the bottom, laminar
airstreams may play a role, not affecting the sin2 (y/2) dependence, but lowering
its coefficient below 4. So, formula (5) has to be changed into:

Cly)=a+b.sinz2(y/2) (6)

If y = 1800 (flat circle), the drag coefficient is 1,1. So, @ + b should be about 1,1.

The Experiments

To study the relation between the drag coefficient and the top angle, a series
of cones was constructed. All had the same base area A, but different top angles y.
To keep A constant, the radius r of the base has to be kept constant. Therefore, an
increase of top angle Yy means a decrease of the length [ of the cone. The mass of
each cone was made equal by adding some weight.

A position sensor (CBR of Texas Instruments) was used to measure the position
of the falling cones at different moments of time. Using an interface (Coachlab II,
CMA 2000), the sensor signal was sent to the computer and processed by the pro-
gram Coach 5 to produce distance-time and speed-time graphs. From the graphs,
the maximum speed of every cone was calculated, and the average of three mea-
surements was used in the calculations.

Formula (3) was used to calculate the drag coefficients. Results were plotted in
a G, sin? (y/2) diagram.

When doing the measurements, some difficulties were encountered. The cone
tended to deviate, when released less than 1 meter from the wall of the laboratory
room. The height of the room (4,5 m) appeared to be too small for the sharper
cones to leave a sufficient distance for measuring the maximum speed. Therefore,
no reliable data could be gathered for cones with a top angle less than 600. For
cones with y > 1200, it was not possible to select three movements without flutter-
ing. Eventually, the data of seven cones with top angles between 600 and 1200 could
be used.
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Results

In Figure 5, a typical diagram produced
by Coachb is shown. It illustrates that, some

Ex(m) xttime (mis) 6,0
Fitering xtime (mis) g0

28 -

time after release, the (x, #) graph shows a eyl >
2 i ; 20

straight line, the (v, #) graph reaching a ,, - ” e
AU AR Em——— -
¥ 1,0

The drag coefficient is plotted versus * e
sin2(y/2) in Figure 7. This diagram con- :j g 0

firms formula (6), the coefficients being
a=10,40 + 0,04
b=0,57+0,11

time(s)
I 120 12,2 124 126 12,8 13,0 132 13,4

Figure 5. A Diagram from Coach>

Discussion
The linear relation between the drag value and sin2(y/2) is confirmed within
the realm of 60c < y < 120o. Extrapolation to y = 0 gives: C = 0,40 + 0,04.
Extrapolation of the relation to y = 1800 gives C= 0,97 + 0,15. These values agree
with the expected order (0,34 and 1,1 respectively).

Consequences: Make a Reasonable Guess

x(m itime (mis) 5,

Having found the formula (6) and the @ i ; fﬁwsé’vaeimé iz
values of its coefficients, we developed ways ; L e 5 o
in which students can be guided. The first | =~/ 7 )
problem was: What distance does the cone have " !
to fall for its speed to become constant? . - s ;:

To solve this, Polya’s approach of ma- 4 & =
king a first and a second ‘reasonable guess’ : P

T8 120 122 124 126 128 10 B2 134

can be used (Polya, 1954). In the first ‘rea-
sonable guess,” students are asked to use
prior knowledge: the distance a free falling
body has to fall to reach the maximum

Figure 6. Estimate of Distance of Falling before
Reaching Maximum Speed

0,9
speed is given by the ‘uniform acceleration” S :
formula: o7 e
0,6
0 05 1
g Vimax (7) wf
2 034
g 02
01
Using our experimental results and 0

0 0,1 0.2 03 04 05 0,6 07 08
SiteG2)

inserting the maximum speed from the
Figure 4 graphs into (7), we get as first guess
= 0,3 m. This is represented by the lower
horizontal line in Figure 6. The crossing
point of this line'with the (x, ) graph is not on the linear part of the graph. So, the
cone is not yet at its maximum speed after having fallen 0,3 m. So, a second guess
is needed. The upper line in Figure 6 at double distance does cross the linear part.
The same results were found when we applied this second guess to the other cones
we used. So, an easy way can be chosen: double the distance! The teacher can sug-

Figure 6. Diagram with the Drag Coefficient as a
Function of the Square of the Sine of the Top Angle.
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gest the students to solve the first problem by taking the distance two or three times
the result of formula (7). They need a further suggestion, because they are likely
to say they cannot use that formula without knowing the maximum speed. Then, it
could be suggested to make a reasonable guess from what point onwards the speed
is constant, to measure the approximated maximum speed. And then check it
using formula 7.

An alternative for solving problem 2 is modelling with the computer (Mooldijk
& Savelsbergh, 2000). It takes a lot of time and could be a separate research pro-
ject, but there is room for students to find their own ways!

The second issue was: How does the maximum speed depend on the top angle? From
a guidance point of view, it is better to transform it into: What graph is the best to
make, to process the data gathered when studying how the maximum speed
depends on the top angle? The teacher can suggest the following procedure to the
students:

— calculate the drag coefficient of all cones from experimental data, using for-

mula 3.

— try a graph of the drag coefficient versus sin(y/2) or sin2(y/2).

When trying to measure the maximum speed, they will meet problem 1. As it
can be solved now without using formula 6, they can find the formula themselves!

Conclusions

In this study, the relation between the drag coefficient and the top angle of a
cone can be found using formula 6. Ways of using this formula to answer the ques-
tions that students may ask are suggested, using formula 7. Three important, more
general aspects of our suggestions have to be stressed.

(1) The Polya method: Make a reasonable guess using what you already know;
check the result and, if needed, adapt your guess. This method is an important one
in the light of the main goal of the investigation assignments: Learning about
doing investigations.

(2) The different roles of the teacher and of the physics curriculum expert.
The teacher has to concentrate on the actual guiding of the students. He/she
therefore needs the expert to identify physics content problems, which hinder the
guidance and to do the deep-going and time-consuming development work to find
handsome solutions.

(3) Knowledge of a complicated formula, like formula 6, can be used by teach-
ers to give direction to the investigation process of students, but should not be
given to the students. Otherwise, the room for them to find their own solutions
would be too small.

Appendix
In this Appendix formula (4) is derived using the Newton model.
Let Nbe the number of particles per unit of volume. All particles hit the cone
surface at angle ¢ with the surface normal, and bounce off with the same angle.

From Figure 2 and 4, it can be seen that ¢ equals 7/2 - y/2. If a particle with mass
collides elastically with the cone, its momentum p changes by:
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Appm’ticle = 2mV . cos (QO) (8)

along the normal on the outside cone surface. This results in the opposite
change of momentum of the cone:

Aprone = 2mv . cos(@) (9)

As the horizontal components of the momentum of the particles that bounce
on the cone are cancelled out, only the vertical components count. So, one colli-
sion contributes just a change of momentum of the cone in the vertically upward
direction of:

Apvm‘ical = 2myv . cos2() (10)
The number of particles that strike an area dA of the cone surface in time At is
Nga = Nv. cos(p) dA . At (11)

Using the equality of change of impulse and momentum, @ being the density
of the medium the cone is falling in, with

0=Nm (12)

the vertical force on the surface of an area dA from air drag is

dFirag = 20V2 . cos3(q) . dA (13)

The air drag on the total cone surface Sis given by the surface integral:
Firag = L [20v2 . cos3(q) . dA (14)

This equation can be written as follows:

Firag = 20V2 R (15)

R equalling:

R = [[cos3(q) . dA (16)

Accosrding to Edwards (1977), one can write for the coefficient of resistance:
g = 7%2-3“(7)2 . dx (17)

with y(x) the function that determines the shape of the falling body. In the case
of the cone, you can write for that function

y(x) = ax (18)
a being

_ _sin @
a=tan @=-— 0 (19)
Soy =a

Substitution of the requirement (19) for the cone into (18) gives:

R TJ 2x rj 2x 72

70 Ty 2 %o 20

. dx
1+a2 1+a2
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Inserting (20) into (21), using @ =74 - ¥/ and A = 7 12
one gets:

R=A.cos2 (m2-y/2) =A.sin2(y2)  (21)

So, we can write the drag force:

Firag = 2A0V2 . sin2 (y/2) (22)
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